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HINAMINAL 33ThIhRfl3P

Sabert not*

1. Introduction

P)ecision making over time In an uncertain environment has

motivated much research, and given rise to different definitions Of

equilibria. Research on Temporary Equilibria concentrated on the

consistency of agents when aking forecasts, together with classical

rational behavior under risk. Rational Ex:pectation Equilibria were

developed from the seminal paper of Muth until the model of Anderson-

Sonnenachein provided an existence theorem: an equilibrium exists if

agents ak. decisions which generate through equilibrium market price,

the probability distribution they used in making their decisions. We

call Informational Equilibrium an equilibrium of decisions and fborecasts

of agents In a dynamic process: agents use their forecasts to make their

decisions and these decisions generate through the system a future

distribution which matches the forecasts.* The structure of the model

Is quite general ad is not specially related to a sequence of mrkets.

Tbis work has beepi sponsored In part iw office of Nava Research Contract
OUD-3000l4i-9-C-0685 at the Center for Research on Organisational ifficiency
at Stamford Unversity, and In part Wy a grant from Minetbre fraucais don
Affaires Ifaeggres, fur the year 1980-81. I want to akwegeher'e
flor their help and a m -s. Professors K.J. Arrow, P.J. hmd and
M. Mzm from tamford University, and Robert Anderson and J.P. nlormns,
ibo helped as through mathematical difficulties during their visit,, a
wall as the clerical staff Ui the Department of Noonaoes at tanflord.

$01DOertmemt of 20om0=i089 the University ofSotatoEgfed
Souh~tm W9 MN, swlam.
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The sequence of decisions of agents and the sequence of states of the

market form a stochastic process that ve refor to as the "model" in

Vhich agents decide. It follovs Blackwell's [1965] model in that it

assumes a Notion Law (relating decisions at time t and the distribution

at time t +71) as given. We assue that our agents behave consistently

with the model, in the sense that they know its structure if not its

exact distributions. Then they use the information they receive about

the state of the system to forecast the future states, their forecasts

being "parallel" to the unknown Motion Law.

At each period (time is discrete) they decide on a present

action and on a plan for the future. We do not focus here on the

consistency that a temporary equilibrium would require (in the sense

of Grandmont for example).

The model is presented in Section 2. The definition of

equilibrium was given by Shefrin (1980], naely it is a fixed point

of a couple of correspondences: the correspondence relating decisions

of agents and the distribution they generate next period, and the

correspondence relating forecasts of agents and their resultant decisions.

In Section 3 ve show that the model has "good" properties,

because the distribution generated next period is a "contituous"

function of the decisions of agents. This is a neoessary condition,

which is verified by this model.

In Section 4 we give two examples in vhich the decisions of

agents are contiaiuos function (loosely speaking) of their forecasts

.. =. ir
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(i.* In which agents decide In such a way that a teaporary equilibrivm

occurs as specified by the Gradmnt and Nash model).

As we ake "heavy* use of probability transitions, we had to

develop algebraic properties of this mthemtical tool (in Appendix 1).

'The fixed-point property defining our equilibrium relies on topological

propertien of transitions which have been established in Appendix 2.

Appendix 3 is a very limited attempt to explain what a forecast could

be. Clearly a comlete theory of rational behavior of agents

(concerning the use of forecasts) should be developed.

2. The Model

In short, If Ht is the set of states of the systemi agent

I knows only a signal in St by a random Variable a if he has a

II

his decision a t 9 then we prove:

(1) That there exists a Narkov kernel Qtrelating and

t v hich Is..a function of the decision a 6 I I.

Itt
(2) That there mcists a "Posterior" distribution N1 on Ht

which is a function of et: It.

Thuas the distribution on 1 t*l generated by theais

itCan be compaed to the distribution that agent I forecasts,

elpiibrm vuldtake place when the two distributions match. The

V * **~ "b *.%7-~' Ilk~..* * . *



co*KStiona for the fixed-point theorem to hold depend on the vay

actions are defined from the forecasts. We shall see that for variouis

standard types of equilibria* they hold. In particular, if one uses

the teaporary equilibrium framework one can use the standard existence

results to obtain existence of an infomational equilibrium.

2.1 Process of Decision Makigg Under Uncertainty

Prameork:

(1) I is a set of decision makers. Let us suppose I finite

unless otherwise stated. Tim 'is discreet: tE 3N.

(2) States of nature are generated by a process (Q t 0 , v

t E B, unknown to the agents. We suppose (for mathematical

*t t
purposes) a to be metric and separable and a to be its florel

sigm-algebra.

(3) At each time ts agent i chooses an action for tim

t from a set A t(Which is assumed metric separable) and its siMMa-
i

t ~ t t
algebra is the set of Dwel-subsets * Let 'us call A 0 X A .A

t 161
has the same properties as Ati Let us use the following notation,

It+ mX Isand it- XI#.

SI) tates of the systems at time t are elements of

Q x At- - Ht. Thus ht IEN is the sequence of the previous and

present exogenous states of nature and the previous actions:

h C w,,.,gvta ...g a - .(That is, ht is the history until

t.) Let me callV the distribution induced on itfrom atand the

...........
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decision process. We suppose that states at tim t are related to

states of nature at time t + 1 by the Motion Law.

t+l : R t x A t a*~ Utl

This means that for every history up to t and actions of agents at

time t there is a distribution on the sets of future outees.

(5) Each agent I does not know at , nor maybe al of At - l -

but we suppose that he receives a signal which is a random variable,

at : Ht  sit , here Sit is a metric separable space and is measurable

vith its Borel signs-algebra. We also assue that he has a "forecast

function." More generally we suppose that, from this signal and his

action, he can forecast a probability on the space of his future signals

by: Tt~ l t t -t+l+ (For a Justification of Ttl see APPendix
I~ XJ (lowI

RemIber that there is no restrictive assumption on S I , so that

t+l
although the agent is going to receive only a signal Si , he could

well have to forecast on a muh broader space like it+' itself.

(6) Each agent i makes a decision at each time t. It does

not only consist of. an action a 6 At ; agent i chooses a decision

rulAee hich rl is in f hsfuture signal to hs future actions.

i Ai S )i"

t+l t tl tl t+l, t2 tl eta

(a , )(s + ( (l lI + ), etc, so that for any

it ,tsl + t
(I 0 ot *.,.) 6 0 the result of the decision rule a w I ould be

, ' ' ,';. !; .:', :G. :. ::- !: :: ::: :%. : :.: ..:' ::-:-¢ :::-:.:.":.:..:. -.7-.%0,-.



t t' t~l t~l

Thinefore the agnt decides what mw be an infinit ely long sequence of

actions each dependent Wpn the atochmotic evnolution of the process and

his previous actions.* Such an extensive calculation is of course difficult

to hamnl a.ad Indeed It Is diffi cult to envlsa&* an agent undertaking

It.* We shall tikerefore siMlify * asuming that agents have In mind a

stationery decision rule. Mhis does not mean'that their rule vill

Indeed bevemodifled over time, but they reduce their calculation to

mangealeprcorwtions W asiming this iilbe'the case * Thus their

assumed rule will b6e

t t t~l

with

ar 1  a t

Rence we can consider tan

&I: St.At

To summarise thi dabiia os of agents we shall call. St: A

a transition such that the induced transition from a t projection

t t ton Ai is ai at~

lip,** ~ ~ K'
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t

l~t
r.,Proi tA

% A

Ht t At
a

4 could lie 114s * , the meaning then being an aggregation of

decisions of agents vhen these decisions are stochastically Independent

(relative to the distribution induced on A ). Other aggregating

processes could-be wied according to specific models.

*~~~~ (7 ebaen makes 14s doelsion by maiiing a utility

function. To set it in the most general fravmork this function should

be dependent on-the present signal and on te decisions of other agents:

But- a G(st) is a function of the unknon future signals, agent

I uses his forecast function to cempute his expected utility:

rl +YI U 1 i(911 (&j) , t(*ti's l)

* tr1 st Ia1st))ds t+1 )

2.2 P'r.. of, ftftts of MWe OSta

Mwe process W3,p ) aerset the sequence of states of the

.~ -'. -' .
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ms 1 t atl-x A t. hen the aggrete decision t A t

is taken it i Muces a distribution on At  (tbat we still write a )

an thus n 0"-x At-. Et x At t ally it is a t. (fte

Appendix 1 for notation an4 4efinition of the cross product.)

tt

ai t olt t t- tL~~~~~~ A _0, ,. .Kt x A tx ' ..

Now the Law of otion of the -system is v :H t x At -- 1

and we define a distiLbition oil Vv' 3 It V A= tl by

(2.2,1 " ! (lt It It , . ""

x At"

at t

t 1  - . x X

A- i

ItJL. Qtbx tNt 3

The process is Wained by thq recurrence fonwula (2.2.1). To be a

(ik.. Proces. a transition 0: it -c el ut exist, such that:

t+ t i

(U. Aypp x 1 for an eeduvalmc4 miuition of a i process.)

I'



Qtdoes not appear on the diagram but ve can extract it from the

defining formula. p i~ is defined on Ht3 . g Q x Ht x At by

V f u iI~ xt e =Ot- 0At whore f+-xe ~ x'e x ei,

(2.2.3) t+ (etl X e) * j t+1 (vt a t- a'0u)( dt-)

As a t Vt is defined by: t ol t (et x e) ftht-i()

we have

(2.2.I&) t(jt1Xt) t+1(t a tl)(h,dat)lt(t, dt)

*1

if 0 *Q *p ve vould have

(2.2.5) P ll~t4 x t).tt(ht,'tI x Xt-),t( dl)

JH

We can vrite the formula (2.2.14) such that, compared with (2.2.5), we

tl t-9-

-t

, qtl see t Qppis n the rsi bt we ba xracclth

+7t) X it[Xt+ t" , at; t-)

Tihus$ Q is defined on the sqare sets (and its extension on is

unij.) for V € oSt eT-r hit 6- e and for ery 17t ,1,

(2.2.6) p(t9t' x tht I wtlh ~ +t-)Qt(htd)

We anlrie he ox al (.2.) ~h ~l, are ,lth ,2.a.),e

se hi i l h 4l~slo ewe rces

xJ '~P -.. *.*. *.;. ..*,,*L - .-. -.". .

' -i 'l tii~ii l*1 . *1 . *- *- ._. .. ,.,. .,.,,.., .- ,.-..,.- . _. . ,, : ,



Thus, we have established the folloving.

Proposition: The process defined by a measure V on H',

the sequence Ht+l - Qt+l-X A t- - x H x At , the Motion Law

T t+: t- x A t-_ nt+% and the agregate decision rule at: Ht _ A t

is a Markov process Vhose kernel Q is defined above by (2.2.6).

The underlying process ft x At-'-  is more general as its distribution

depends on all previous states, but of course if it were assumed

Markovian from the beginning, as is often done, Ht  also would be

Markovian, a fortiori.

Very often in similar models, the exogenous stochastic process

(0lsv) is assumed to be a Markov process. The fact that the state

of the system is a Markov process is then a direct consequence as we

have shown elsewhere for the models of Grandmont and Hildenbrand (19471 ,

and Green and MaJudar [1972] (see Appendix 4).

2.3 The Decision Process of Each Agent

At time t, Agents know only the previous signals of St

and previous actions of A In another context we could consider
i.

that he would know past signals and actions of other agents, but here
t

let him only deal with the set Si of signals he receives from previous

states and actions by way of the random variable:

t t

...,.,........,
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For ever" signal and for each of his actions, agent i has a forecast

t+1 t t t+l*
of vhat his future signals vil be Yt +: 8t x A -4 Si from

the structure

t

A
i  t a t t

t  t

I - O Si 
A

t 

t

t t t

*I i -t

*.We deduce on Ift XSt xAt th itiuin(atGto t Pt .Now
xix i th Iitibto

the problem of forecasting for agent i is that of comparing his

forecast 1 T st+' vith the distribution on S" This
_ t, _tl

distribution is induced from. the distribution on 1t+1 by the sign a

~ 

t

t

l

+1 tt t t+oelit nS x A1

Q _ __ __t_ __ __ _ __ _ __ _ t l

t-t SWe clearly need a link from S~ t xA to it sb that iUs composition

with ta i can be compared with T

t
M aositon: For every decision process .s, there exists a

from S to E ich is defined by
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(2. XtG t) M (( Oa)It u(at 00t)iA t

hdatence comes from the theorem of Jirina wen the spaces Et and

ix A. are both mrtric and separable; this result is fmdamental
4, t

in Bayesian inference.- Mt is the posterior distribution.

We can now clearly define what we mean by infrmtiosal

equilibrium: the expectation Tt  of agent i at time t, mati
match the objective transition

(2.3.2) a 0  Q.M 0

2 .4 Informational Equilibrium

t1. From formula (2.2.6) we see explicitly how Q in a function

t t tof a . Let us write Q ) for clarity. From fomula (2.3.1), we

t tsee that Mt is a fmction of st. The relation between the family
tt _t+lof a i a and the distribution they generate on Si next period

is then

Biut (a 0 Q( 5Mt) *IO

t t nwhere a atii is an element of the set P = X V the product of
i-i

the sets of decisions of each agents V t at : at -- C }
it l t

The relation between ft  and at depends on the specific

model of decision Making. In models where actions we defined by a

temporary equilibrium fr example, for every T1  verifying certain

4.,o :.. .. ," - - -,.,,.. . . . . '. .-.... . . ...44 4 4 4 4 4 4 4 .4 . ., . .. . . . . . .. - . ,. - 4 .. , .,

' ,,,' ".," .', .,.'. "*,,%, . , .', "..'. .. , ". ', ... ,.',. ,'.. .... . .. .-.. '.. . .'.....-.. .-. "... . . . . . ".. ". . . .4 " " " , . . ' " " "
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r !t

condtion., the corresponding 1 Is will be in th sen of OitJim

decisions.* Let =s 03. Y1TYT ) the set of decisions that agent I

3ekes according to his fbrecest.

-t.1 t t t4l)9if Fu is the set offoecsts of neflt i, F1 . 1  8S1 x A --- c 8 1

yl isacozeslcdze afro F. to Pi1 .
n n

Let us call PV m AP and F - X F I a

*: P ---- F

-t . (at) p(t

and

y: F--

Vt a ( )__,t  t yl (YI t )L axll

We then have

Deflntion 1: Mw fam lie of freosmst MA of decisions

at are in info tional equ lbrius if:

vt.) and y(y) S a

Or, If ve consider the corroepondece

(py): VxF- FxV ,

ve have

,,... , ,.. . . . . . . . ..., '........ ... .,......, .... .... ,........... . ..-. ..: . ,.../ .. .. .. ..-.. .. ......



2:n4 Informational evilbim Is a ftmily of
de.isU4 atAm o foe af T t - (yt s

(6,tY9) Is a zu-epoint of the correspondence (5).

kIstnoe of much a relies on propertes of

model as ftr e V, F and 0 &O oncerSne4 (these ate studied In

section 3). te properties of y, cu the other band, rely on the

features of the decision making model of each agent (examples of mach

models are revieved in section 4.). Using Kakutani's theorem fbr an

appropriate topolog ye have to prove that V x F is compact and

convex and that (l,y). is a non-empty, compact and conve-lued

correspondence and has a closed graph.

3. Fixed-Point Pro les of the Model

In this part we onit all time and agent indexes unless

needed. The fixed-point properties of the model

V x F is compact and convex

0 is continuous ,

are proved for the u-veak topolog on the set of transitions, as

defined in Appendix 2.

The properties of y depend on the definition of the way

agents mae making their decisions; this is not part of the model. Two

examples of correspondence y are given in section 4.

p.+.!*' " +*""- .. ,o , -. ... . ,-.. -..... ... .,- . .. .. . . . ..- -.-. . . . - .. . . . . ... - - - ,,.

-ft. S ,o% " . *e. l - mol *llo ++ - . I . . . . . . .-l.*f'b -'.* * * .*ft* .*. l-* .- . l' .*lq'

'*,** ? %t0 LOi II9 Il% % f t.; i " * 5\*i ** -: ' -. d * %"A-+ *



On 1, eoqmet by as I , there Is the "real" (uknomn)

pi P. Main, acorsiv to Appendix 2. we trmfb= for

a * ,- A, in a o ll: B H A,

Definition: n is said to converge -veeskly toward a,

1ff a n0P converges weakly toward a, 0 .

Consistent vith the notation of Appendix 2, let us call

P the sot of probabilities on H x A. V' Is compc t for the

topolog of the weask coavgence of meamues on the compact set

I x A. 9'i, the sea of probabilities on N x A vlose marainsls on

E wre v, is omact too, and so is Vp, he product of sets of

equivalemce -a.e. classes of transitions. P, V', At, V ' are convex.

Ve then hae the first result.

Result 1: For every probability P on I, Pp is compact convez.

On 8t x At the probability is the cross-product of the

probability on 8t : a• V , ad of the transition at  from 8t

tto Ai, vhich is in ftet, the distribution that saent I decides on

the set of his actions, given his signl. We have:

' ' .'. . .,, ,, .,. ,. , . ,, ..,,. . . . . . . . . -. . . . .. .. . . . . . . . . . •. . . . - -. ,. .



ta t C t x A,

A t

N I;xl(enowreLet us call

t t t*1
If F Is the set of transitions from S t  Ai to 81 (e nwvrite

S xA-- 8 1  and drop the index t ), l2t Fi be the nt of

probabilities on St A I xe ; FjVi tbe set of ObtIL0

x X t hose asiaml s on Si x A1  re Vo -

topolog on F iv, a11 these sets we compft. Fi, F, FiV, and

I I are convex. Then F I XFtv Is coqact and ooam being a finite

product of compact convex sets for the topologf canonical1y defined

by nY V EI T  v-rekly.

esult 2: For every probability u, and ftly of decisions

at , F Is a copait set fbr the above topology.

To prove the costlunlty of B, we translate the problem in

tersn of transition to a problem In term of measues:

a nEGVjj (a n a) 4011 E VIV

i( e i 0(%)O bF,3 in a) 1e d F,p

S. - .. . . . .. . . . . .
% %;.-...

, , ,,. . .... . .,-..,'.h.'',. ,....,,.'. ... '. '- . ... ...-. . . . . ... .-. . -..
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a/

uaif an a vbichmeam t-t a)e i-1 (a a) 0

we have to prove that

(3.1) 0 (a) O[(anea) oil] - S([(aOa) 0U]

Recall that (a) 0 Q(an ) . N(a n ) vith 1Cn ) verifying

the defining equality M(e n ) O(a n a ) -(a n  )O -

(3.1) means

VjEB(A x S xH)

(3.2) f 6('.h++)(Mn )(a,s,d+)[(mn a) o l(da.ds) converges.
AxSxH+

(3.2) is

I 6(as.. ) f Q(m) a()),1 %dm )(a,.h)[1 ® ) * i](da ,ds)
AxSxH+ B

By the definition of M(%) , this Implies V g e 1 (A x S),

I I g(as)M(n )(a,sdh)[(aO a) o *)]1ads1
H AxS

f u (dh) g(a.,)( 0 a)(had,s)

K ANn

So (3.2) becomes, since V h, (as,h+ ) - g(a.s)

( (dh) f 1(92s,,h+)Q( )(a_(h),h+)lau( )(4 od)
H AxSxN+

t, , ,7 ' :¢ '. * *, .. . . . .. . . . . . . . . . . . , .. . . .. . .. . . . . .



We Vant to prove that (3.3) converses tovard

Ax~xH+

9 which becames under the ese sinplificatiouis:

'IU1 (dh)J(as)Q)(v()&)a )(,a )
H* Ax~xH'+

We are thus confronted with proving the following:

R KxL.

-f p(dh) I j(k,Z)Q(v)(h,dl)v(h,dk) converses tovard 0
H KxL

This can be shown by adding and subtraating the tern

f pi(dh) f J(k,L)Q(v)(h,dA)v (h,dk). We obtain
H KXL

f-~0()hd) I (kAQ(h1(.4lih(I]

Ow. second bracket is:

I v3(h,UdJ) I j(k,&)Q(vi)(h,8A) -I V(h,4At) I E(kJL)Q(v)(b,4t)
K L K L

10W*i~ .~,



Irwe Call (hqi) mf (k,.)Q(V)(h,4L), £ E gO(I x L), ve see
L

vn --- /I(h]N) (seco, bracket 3 - 0
p-q

,be f rst bracket Is:

I (vn)(h,dJL)jj (k.,A)vn(h~dk) -/Q(v)(h)4d) (k,J&)vn(h.dk )

L K LK

end if we call sn(hk) -1 f(k,,)vn(h,dk) Cc 0(H x K), we have
K

I u(dh) fJgn(hk)Q(v6) (h,dt) -I g(hk)Q(v) (h.dl)
H L L

We shall need the folowing

Lem Q Is acontinuous function of a: a ->a Q%--v ()

Rcall that this a Is the agrgate of &I and a: --- A =X AI
ie

Henoe, for ever 9 4E Ol(H x K):

£ 3 N V n - Ne jpi(dh) [I (hkQ~) hdl) - I (hqk)Q(v)(h~dt)] I -C. C

In particular, for n z N ve havhet sami remlt for gn Sateed

of g. thus proving the convergesce toward 0 of the first bracket.

fhis ends the proof of the following result

Rsult 3: * is a continuous function from V to F for the

it-.ek topolog.

jK*. :
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We still hwTe to prove the Lemma, wich in bW itself an interesting

result concerning the process Q which is continuous in a.

Recalithat Q~m ) is defined by: I ~ xg t xA, V 0+1;

V I E HS, V 11 E A, V h r ( , Q(en )(h.1 x h x )Jh(hht , An(h).,

or V hE R, V E H S x RH+1), vith I + .-(vjh,):

Jpa(dh) I j(h,h +)Q(a n)(h,dh'+).u' fj&(dh) I, J(h,w,a)Ir(h,a~dv)* (h,da)

As

fj(h,v,a)T(h,adv) E BJ(H x A)
a

the last integral converges toward

JM(dh) f+1  j(h,v,)v(h,Aw)*(h,4a) a ft6(dh)JEh)Q)hdh)
N QX&I N

wham 4an -- 0 t

* .. DRecIsions In a Tmirar Mumlibrivm

A way to define the relation y between the forecasts of agents
Tt+1 adlu their decision a t  is to suppose that som sort of equilibrium

ecurs at tiae t: agents we optimising In a consistent va. low

we consider two different notions. First, a general Nash eqalibrim

where agents maximise their total enpef*ed gain, relative to their

expectations on the futum signals an there the take the decisions

of othmer agents as given.

................... ........... ......
4% ' • • +., 

•
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Seconds a Walresian tamporary equilibrium of pure exchange markets

vith assets: ve shall use ran ntl's model ([1970] aMn [19T4]).

Nash Ui Iibii

D* ttow At each time t (that ve no longer indicate),

agent I makes his stationary decision ci" Recall that a is

a transition from 8t to AI and a stationary decision means that

agent I chooses an a, in Ai with probability Yl(si) and that

next time he plasn to choose a 1 with probability at(s 1 ) if

he receives signal ai , and so on: si) a i(i). If his

utility function at time t depends on his decision and on other

agents' actions (a,)JOt let us write U1 ((s0) 3  .) i) for the

expected utility. For example, we could have

+ T

A uT0

where T is a finite horizon. The product of the a I (s) means

that the actions at time t are independent of the actions made at

other times.

We sesmed also that decisions of agents are independent, so

that the distribution on A- XA is It

In a Nash equilibrium agent i maximizes his utility taking

the decisions of other agents given, so that his payoff would be:

,-',. ...... ,.., ,...., .. .. . S:' , .,/ -,: ; , , , .; ,,....,. :, ,,, . . , . . . . .
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dwe a(s) isg61Ive for j i1

Wes emresslon depends on the future signals ai Agent I

'es a t " .
1  8 x A1 - Si + . In order to aold

the .mpleidtw ans -to the -pirot .1 A1 , we'singliy i a

treasitics from s to Si. Mo the total ei e payoff relstive

to the wsectsio + on the futue signals a+ of agent i,

given the others' decisions, is:

GJL~~vi(SL - f4 . 1Y(alLs )
B1  A

. I -i 1(s{.,Ga) ,

A lash equilibrium is an # = (- )t such that:

V.1) 1 ),(V a, EV),Gi((a) ,1,Y i ) :'Oi(a,Y i)

So our c rrespondence y: F -- D which relates forecasts of agents

to their decisions in a Nash equilibrium is defined by:

(Y) = {a*I Y i ( .1) holdu)

................ ,.''. ,b, , ,'.w,'.',- .'- . ." -"."-..-," . .".-".' '.'..•." ..-.; . ' ' .-.,. ' '.,.-.' -...' .
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Ptoertes of X.

(1) y in non-empty. This is because, with our hypothesis, a

Nash equilibrium exists; we verify that the Nash theorem holds:

(a) V is convex and compact,

(b) Gi  is continuous on X Vi
iem

(c) V a; (siIG€((j) sai ) is ximim is coe.

Proof:

(a) has already been established for the i-week topology.
(b) let a -- s, which means that V 1i 6 IS -v t

or. V i Is .0 -*s C . As we often did, let us write aifor
-'1n i uI-v i i

ai oi.

Lema_: V i E I,. a =i >i", R iai

Proof: It is sufficient to prove it for I = (1,2}:

We have V 61 C B(Ai x H),f dp f 61 din-- f du f 61 dai"
H Ai H Ai

We need V B(A x H), f d ti f dlai,-> f dp dIsai.
H A H A

But we can decompose fndu f - f41d ftdm ll=2 into
in n

f d f (s.,,a2 ,h) in(hda.) a 2(h,da2 ) - do Sdin ,

+ Af SlAa 1 1 &s 2 - I JdVAd"a2

AJ (al,a2 ,h)*n (hda) 4E 8(A 2 x H)
A-.

' ..'**" * *." '*.. .
- '

. . . . . . ..". .. .."' "- . " -"" " " """ " . ". . "-. ". .""



thus the first difference converges toward 0, and as

I 6(ala 2 h)a 2 (hda) E Sl(A1 x H)
A2

the second difference also converges toward 0.

Now G:(any(S)) = f+ T& iandTi(s:).
Sn S +A 1 EI i~ i i

We want to prove that if an1 a, GiC n (s Ca

* 0 1-a.e. but f U d*.(s.) is bounded by 1 (if U vas not,

take i- i/Ui). So if aiMn-* Hai, Gi(a(i)'i) -- ia(si)T, )

ae ji-a.e.

(c) Let a, and a' be such that G.(a) is maximm in a,

and call M = G.i( H a x a) = Gi( n a x a T). Then for anyjoi JJoi

E (0,I) as Gi(a) is linear in a*

G n a (AQ! + (. - A)a")) Am + (l - A)M = M
j 1 1 1

*Thu 1 Aa'l + Ci - X)ot' is such that Gi(a) is mxium in ai

and the set of maxima is convex.

We have thus proved the first property that y is non-empty.

(2) y is convex valued for every Y E P, and for every a'

*and a" in A(T): Gi( JI a xli >~ 'G 1C)

joi

Thus aultiplying the first line by A 6 (0,1) and the second by

1 - A, adding the two lines we have:

Ne, ...
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AG (ila x a') + (1 - A)Gi(HUj X cu) > Gi(G)

which, as G is linear in di, proves that .j (l - A)a is in Y(T).

(3) y is compact valued. It is sufficient to prove that y(T)

is closed as F is compact.

If a is a sequence of strategies belonging to y(), and ifn

an -> a, as GI is continuous in a, Gi(an) -- Gi(a) and thus

G (a) is maximum and a is an equilibriun for T.
I

(4) y has a closed graph. Let (a n, n) be a sequence of

V x F converging tovard (,Y) so that Vn an E y(Yn). y has a

closed graph means that E )

an r Y(n) means that

ViE I~Vaj, Gi(%,n) > Gi((Q. ) ,, _

We prove now that

and

V Gjl G ((a 0)1.aj.Yi,n) - G Gi((5a)a#i'ai'fi)

so that

Vi V a,, o(;,f) >Gi((; )Joifti.Yi) I

or CE Y(M)

:,< .--: ::--,-:: -::.. :-,..- : . .-.--: ":.- : ..- .: -: ; . . ...-; .-;... . .... ....... : : .-.-.: .: .-.. :
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Frca the lm of property l(b), we have

1l: If V iE I'_n _ ai' an

Lama 2: Gi(aY 1 n) - 1(Gi) -; 0

Proof: The difference can be written

df -dYi fUi d;

8 A

Fran Lems, 1, V i G~ i, an  n R t a.

Thus, in the first difference, fUi da4 - fu1 do can be majored by c
A A

as soon as n > N , for any e > O. As 'n - Yi"and

SUi d E ( the last difference converges toward 0.

Lem, 3: V al , Gi((% )j)jiscs"j n) "

Proof: This is obviously a particular case of Lemma 2, when

the sequence ," n" is replaced by o,;..a-.n ""cln

which converges toward 0 ... a

We have therefore proved the sufficient con4itions for y:

1. Y is non-empty.

2. y is convex valued.
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3. y is compact valued.

4. y has a closed graph.

Together with the properties of the model, B is continums and the

sets P and F are compact and convex, hence we can state:

Theorem: In this model, when y is defined by a temporary Nash

equilibrium, the correspondence (B,y) has a fixed-point.

Or, less formally: In this process of decision making, if

agents make their decision at each time according to a Nash equilibrIuM,

then there exists an informational equilibrium for the process.

This result comes partly frow the general properties of the

model (properties of P, F and 0) and from the fact that the way

that actions of agents are defined is a "sufficiently continuous" function

of their forecasts in the temporary Nash equilibrium (properties of y).

Walrasian Equilibrium

In a sequence of pure exchange markets where endowments are

randcLu (they are given by an unknown random process) and where agents

* trade consumption goods at time t and make plans for consuptions

• at time t + 1, an equilibrium at time t can occur. This is the

temporary Walraslan eqilibrium as studied by Orandont, mong others.

In his model, time has 2 alues. (This could mean that the

random process of endowments is a homogeneous Markoy process with

constant kernel, so that the econoW is repeated identically.)

r2.... .-.. ".. . --.. ... •...,,.... .. -. ,,,,-•-.-,- ,,.,.... ,- •-.- .. " . , ,S~ . -..!i i::. :..."]i:. :. .:: :.:.-:,::.. .. ,:.:]. : . :.. . .'.. : .:. :,: .. :." ,*. . . : ,. .:: :" ,- .. ,- '.,. :
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Actions of agents at time 1 are consumptions: A7 is a compact set of

3+and a consumption plan for next period A hich is a compact set

of3. and a ) where a is a fumction from the set

of signals. The link between the two periods is an asset (called

money) which can be carried forward from date 1 to date 2. Let
* L

ai  mi  be the quantity of money that agent I carries forward.

The signals are taken to be the equilibrium vector of prices which is a
t

function of the random endowments v through the maximization of

expected utility relative to the forecast V 2: S1 0 S2. a is

chosen to maximize:

1 1) 2 1 2 1d

i(sl) = f U. (a8 a),s.(s ,s ))Vslds2 )
S2 i a

under the budget constraints below. Set = 1 l ) where a, is

money, the only transferable good which is totally consumed in period 2.

1 1 0
S x i + mi  s v + mi

sW < m s2w 2(slsds2 ) + 1

If 1 1 a

If 01 is the dmand function of agent i ; a() ) (x , 1 it must

then follow Walrasian Law:

I - , (ol M
imi)-

*.-6 ,- - .- ,,.-..*............................ ,...........,. •........., . . .,.
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The netesry condition for existence, of an equtlibrim (l,)

(3adnaer, (1900]), that is (namly) the excess demnd correspondence in an

uPer stem-continuous non-empty convex valued correspon e ce C, such that

Vv e C(s), 9 v a 0 , was proved by Grandt [1970] under the fbflowing

assumptions on agents

-Initial endowment* are positive and the Initial endovent of

money is non-sero.

-Utility fmetions are continuous concave, strictly increasing

and time separable

Ui(ai(s"),ciQs'.86)) . ) (rz,(s ) 2

ad on the forecast functions:

--tY is such that if sl is a strictly positive price, i (al)

gives a positive probability to every set of strictly positive prices

for period 2.

-- is weakly continuous.

-2 lA. l .
- is tight: v Y >0,Kcompactc s, V . ,( K) >:l_.

(our hypothesis that S is compact implies this last hypothesis).

Then, and for this class of forecast functions, a temporary equilibrium

(ji ,) exists.

Properties -of X.

1. y(Y) is non-mpty.

, .1-. ..... ....-o... . .. ,...,,.... .. ,,.... • ......-..'.-.•,••, .....

9 : . ..- ,...,.,44.-.... .. ,,......:........ .... . . . ...... ................ :...... .. ,..._.....:...
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2. Y is convex valued am if a' =Ad a" mxi uie JUi(a)dv

Jui(X'*1 + (1 - X)cs")dY fM1i(1(')dY + f(i - ):e"d

as U1  s concave, and for every a,

fiIAa (1 - )s")dY> f JU1 (a)dY + (1 - X) f UJL(a)dY f U1 (a)d

as a' and a" are optimal. So )sA' + (1 - X)" is optimal too.

3. y is ecmpact valued as Y(Y) is closed and this follovs

from U1  being continuous.

. has a closed graph: if ( a (T,) so that

V n r M, a = Y(T ). Let us prove that E y().
n n

V a, fU(s)dYn >_JU()d n

V ,. li JU(a)dy 2_ JU()d, as U Is bounded, and

liJUfan)d - lU¢ n) - U(;)a' n + fU(;)dTn n fu(f)dY
n

Thus, there exists an informational equilibrium in a process

of markets if it satisfies Grandont's conditions for temporary

Walrasian equilibrium to exist at each time.

Conclusion: Let us point out that the temporary equilibrium

concept is not essential in this model for defining the relation between

the forecast and the decision y(Y) = a. Indeed, in Shefrin's model

which gave us the seminal notion of informational equilibrium there

IJ_. .4m . ,.* . * * -. . . .. .- . , .. ... .,. . . . . . •.. . .• .• - -. .. .
. ,, ... ,; .'. ,, % ' J . ' .. .. .' .;. - . . . . , - .. - -, ., . .... ... , .. - . - .- ... , . . . . '. . . . '. " . . . ' . .
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is no such tmporary equIlibrium agets only choose - optlm policy

according to a d ic programing process vubch is "optia1 with

respect to the process in question." (The process in question is the

process that ve call B(m) which generates the future distribution.)

The Important result is that for an informttional equilibrium to exist,

it is sufficient that y is continuous, loosely speaking. It is

satisfying that this is true vhen y is defined by a Nash or

temporary Walrsian equilibrium.

The continuity of y is sufficient, because our model describes

a process in which the future distribution is a continuous function of

the decision. This result, as the model itself in quite general,

could be used to study the learning process of agents which vould

lead to a rational expectation equilibrium. A rational expectation

equilibrium could then be a limit of this informational equilibrium

* vhen the process becomes stationary.

5. Conclusion

We used a structure which gives the notion of equilibrium of

decisions and forecasts a precise meaning. In this process of decision

aking, expectations are formalised by forecast functions which agents

use to make their decisions. Here the model is given and we did not

try to describe the way the Lar of Motion wt~l was generated by the

system. This vay our results cannot be easily compared to existence

results of rational expectations equilibrium for instance, vhere the

main problem is the formalization of the process of price formation.



Mgaves Me esatm~es, ot this Not Lw9 me Peeved that the model

M&d the SmOOessw *inSr aPmewm to -11 existenme of an

e• iLUAwim. We epwatod h pooes itsIeelf r the tfbmation of

decisions "a 0 ee fitwme , t semsis the rle pl ed

w eoc specific model of meisim inisu . If this latter procss

Is cotimous as veil them en epailbWms e exist. Nov each pert

of this model doald be INa-ite4 to relste more closely to and

I, help solve ecoamec decision problem.

,o, mAl.g the model itself we could think of wt+1 as a

formulation of a equilibration iruncton relating equilibrium decisions*1

Snd prices at time t mad t + 1.

Actually., it need not be an equilibrim model. In a disequilibrium

model wt1 could also be defined; it vould be a mre general Notion Low.

Concerning the decision inking process of agents, an explicit

formulation of the formation and iplementation of forecasts should be

developed. Then a rational expectation equilibrium could be thought of

as a stationary process of inforustional equilibria.

I

".'-'": >.>,'T.% 'T*'; . .'". '. "." .*-."-. .:". , ".'i -" .'-' -', -. '".-'.'...'.-.. . . . . . . . . .." -"...-.. . ."..'.-'.. . . . .-.. . .- "".. . .".".. .
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OW ma Interest here is a description of the way agets take

-ortainty Into account .a the rol this pl a in defining states of

ecomamies, if not equilibrim. Thm, setting aside as far as possible

the probem related to the vy 4mad funetios are derived from

utility fmticas, we shall try to focus on the forecasting, learning,

md more generally, on the description of consistent agents using

infozation to diminish the uncertainty they have to deal with. The

mathematical tools used to formalize uncertainty, random events and

forecasting all derive from probability and statistics theory. It

seems that, altbongh dealing mainly with the same problem, authors

differ a great deal in their models, the way they treat them and the

results they obtain. Feeling a need to compare and integrate different

works in the same framework, we have tried to build a general model

of markets under uncertainty.

Seeking generality, a tool more general than probability

distributions was needed: probability transitions. They have been

used very widely in dealing with conditional probability. They are

also the simplest way of describing a family of distributions indexed

by a parameter s is the case in most statistical models. They

represent what is called in Msme theory a mixed strategy (an agent

assigning to each element of his set of informtion a probability

distribution over the set of pure strategies). Thus they allow us to

:,. ,.,.,-, -; -:,% ,-, . - .-. \,.. -; -.,.;..-. ...... ... .. -. -, . ,., . . ... -,.. . - . - . .. , .. - . . -. . . , .



represent (and to conceive) concepts W1 the e mams; agents using

their Infoation or deciding their actions.

Another reason vwy probability transitions are useful is that

the complicated definition of composition gives birth to a very simple

notion (it io the ame the composition of function, which is indeed

a particular case of the composition of transition). Thus we see more

easily the structure of models in which, without this tool, we were

lost in long calculations not appealing to intuition.

Thus, the description of a Bayesian learning process Is rather

simple and easy to describe by a draring. In dynamic processes we

very often have to deal with Markov chains. I think that the use of

composition and "crossed product" (an operation I define which generalizes

composition and is very useful as soon as we have product spaces, as

usually is the case for stochastic processes) makes clear how assumptions

about the processes are related to the results (Ajpendix 4).

This first appendix gives definitions and algebraic properties

of probability transitions (parts 1, 2, 3 and 3), then applications to

Beyesian estimations (5). conditional probabilities (6) a Markov

processes (7). The second appendix defines a topology on a set of

transitions which is consistent with the weak topology on a set of

measures. The third describes the formation of forecasts and the

fourth is a refozmulation of models and results on stationary equilibrium.

*i :*
X : ' " ._ :.".'-,':". "- '" " . ...- " ... . . . . . . .
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Ap:endix 1

Transition Probability as a Modellinx of Relations Under
Uncertainty.

Because in models describing decisions of agents we deal very

often ith probability transition (to each signal he receives,

agents assign a probability distribution on a space) and because

measurable correspondences (hence measurable functions) and probability

are particular cases of probability transitions, it seems useful to

emphasize the role of these morphisms. In doing so it occurred to me

that an operation was needed to describe Bayesian inference and

this operation appeared later to be very useful in dealing with

product spaces. I first called it "produit bizarre," but "crossed

product" seems to be simpler.

1. Definition of a probability transition

Let A - (A,A) and B - (B,B) be t*o measurable spaces and let

T: A x B-> [0,1] be such that:

(i) Va E A, T(a,.): 5-> (0,1] is a probability on (B,B).

(ii) VB0 G 8, T(.,B0 ): A -> [0,1] is measurable for the

Borel sigma-algebra on (0,1].

Then T is called a probability transition, or shorter, a

transition fron A to B, and we shall denote it T: A -< B.

2. Particular cases of transition.

Mi) Probability: A probability P on (A,A) can be viewed

as a transition from any space of only one element (.,{{.},*}) to A,

; ,'', L'L '-'. '.:'=: , '*. " .'"" .' ....- .- , " .' . "'.,. - .. ." ". -. , . -"--.. -. .- ".- - .-. '. .. " *• .. "

, '. .' , ,,- -', ,, ', ' ... .; . • ..., , . .. .- ... : ., -.. -, .- ...i. - - . . .. .- . ,. .. . ....i"
. , .. ,.:. ,, . " . ,.,*,."- ',, , .-." ...*-.. . .-.-. , . ' -.- ,-" -,.'. .-" .. . " . . ,.j . ..'. .. . -. . , - .-
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such that A0 E A P(-,Ao) P(Ao). So ye shall denote P: * - A

"' for a probability on the measurable space A.

(ii) Measurable function 1: A -- B. We can associate to

the unique transition F: A - B such that

V a rGA V BE B, F(,B 0 ) - 1 if 6(a) F Bo

0 if not

3. Composition of transition.

Definition: We call ccmposition of transitions T from B

to C and S from A to B, and we write T o S, the transition

from A to C defined by:

(Va GA)VC0 E C) To s(a,C0 ) = fT(b,C0 ) S(a,db)
B

(Let us be reminded that if 6 is an integrable function on B, and

if S is a transition from a to B, for each a, S(a,.) is a

probability on B and we write Bf 6(b) S(a,db) for the integral of
0

relative to the measure S(a,.).)

(i) Eafle Composition of functions:

B B

A > C A C9 G.

*, .* . * . - .
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(V a e A)(V Co e C) Go F(,.,C) - fG(b,C,)F(a,db)
B

A _(CO)(b)F(adb)

B ( iif 
g1() (CO)

=,(ag-1(C0 )) 0 f(ot

And the transition associated with g 0 6 takes for a and Co,

{ if go 6(a) "CO

the value { if n which is G 0 F(a,Co)
if not0

(ii) Induced transition: Let T be a transition from A to

B and 6 a measurable function from B to C. If F is the transition

associated to J, we can write F * T for the composition. It is

V c0 r C, F * T(.,Co) = JF(b,Co)T(a,db) = fi-1 (b) T (a,db) = T(a, (Bo)

B B (c o )

which is the image of T by 6.
From now on, agregating 6 and F we shall write 6 o T for

the image of T by 6.

A particular case is when P is a probability on B '(A .) and

a measurable function; 6 c P is defined by, and 6 o P is the

probability induced by 6.

Crossed product of transition:

Composition is a particular case of the following. Let S be

a transition from A to B and T from B to C. We can define a

transition from A to the Cartesian product B x C by defining it on

,;o %,- .... .. . . . .. . . . . . . .

...,..: ...... ......-...., ..-. - .... ... ,-. ,... . - .. , -. , .. .. .. , ° . - . ...
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the rectangles ofB 8 C, V a V A V B0  CO e 9C

f T(b,Co)S(a,db)
BO

This defines a transition from A to B x C as we shall show below.

* Let us write T O S for this transition, we name it crossed product

of T and S and we can represent it on a diagram like this:

A TOBS xC

IT
C

T S is a transition:

V a 6 A, V B0 x C0 e B C, T o S(a,Bo x Co ) = fT(b,Co)S(a,db)
B0

a) V E6 B C, V 1 6 A, TOS(a,E) is defined as the unique

prolonpent of T 0 S(a,.) which is defined as additive and monotonic

(thus sigma-additive) on the sigma-algebra of rectangles of the form

B0 x C which generates 8 0 C (see the Neveu theorem of prolongent,

Proposition I-C-l).

b)V E G aDC, TO S(.,E) is measurable. Because of the

* preceding theorem it suffices to prove it on the rectangle B0 x CO

* T(.,C 0 ) is measurable as T is a transition, thus T(.,C0 ) is

uniform limit of linear combinations of characteristic functions. To

show that T*S(., B0 x C0 ) 0 T(b,C O) S(*,db) is measurable, it

0

........ -.
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is sufficient to prove that (V B1  8) 1 B (b) S(.,db) is measurable,
0 1

and this integral is B(,B 0 f B1 ) vhich is measurable as S is a

transition. We can thus set the following

Definition: The unique transition defined from S and T by

VaEA, V B0 x C 0 r Q C, T S(a,B 0 x C) = T(b,C0) S(a,db) is
B0

called the crossed product transition of T and S.

Properties: If B and aC are the projections from

B x C on B and on C , we have (aggregating the projections and

their associated transitions):

B

A '--- --- --- -I - Bx C

TS aC

(Tesi B x C

o .[T®S(.,B o) = TSS(', Bo xC) = JT(b,C) s(.,db) =S(Bo)
B 00 B0

a o [TOSI To S , VCe C

C ° [ ®T s](.,c o ) = TOs(., B S c) = jo(bCo) s(.,db) - To S(.,c o)
0

.. . ' ' - . ' -,., . ., . . j ..... .. "..." . ' . . . - . , . • .. . - •.. -. .. . -
'' . ... , . ,. . ,. . . . . • . .. . .... . - -... . .. , • . - . . - . . ."



AltLough certain care must be taken for left associativity, cross

product is associative (see vq thesis, Annex 1).

Pa.ticular cases of cross product:

a) Measurable functions:

A B C

C

*. The measurable function associated with the crossed product transition

* of the associated F and G to and g, is the couple (j,g 0).

b) Product probability:

PB

t Bx C
" IT

C

Let i-TOP which is a probability on B x C then 0B o r P

": (Neveu Proposition I1, 2.1).

•P

B B BxC

* .'. . - - . , . * . . * / ... -'," - . . . , . . .



Reciprocally, if B and C are closed In P anifv na

probability of B x C, there exists a transition from B to C

called the probability conditioned by aB; let us write it wIB (or l(elciB)).

which is such that w - wOrBOP (or, w(-OB) OP) (Raoult [1975]).

c) Induced distribution: In the following diagram we see that

~p LB

'~-~CPxC 0*(,0 XC ) P[BO f l (C)•~~~42 B x C 0 lS o)"P~

C

5. Application of transitions to Bayesian estimation

Let e be the set of parameters (together with a sigma-algebra,

if the model doesn't imply any, let it be the set of all subsets of 0),

and let v be a prior probability on 0. If X is the measurable

space of experiments, let P be a transition from e to X describing

the statistical structure.

A Bayesian statistician will use w = P o P as a predictable

probability on X. On e x x we can define P it.

Let I: 6xX --X l x e

such that (G,x) I. (x,).

If e and X are closed subsets of some 3n there exists a

transition M from X to 0 such that: I o (M,) = P~I.

t o. . .. ,. .. . .... . . . . . . . . . . . . . . . . . .
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pay %e' O x Ix
I I - Vx
P / xBe

xX x

l Z4E x, (x,.) is called a posterior distribution on 0. This is the

probability that the Bayesian statistician uses instead of P, when he

has observed x. He will then predict that an event X E x Vill
0

have the probability P. M(xX)•

* 6. Alication to Conditional Probabilities

xPA
.5-.--

_ _ _

ty 0P(- 1x)

*" Unhappily, the comon way of writing conditional probability Is the

reverse of the way we wrote the transition. The probability conditional

to X on B is a transition frm A to fl such that:

VA0 E A, VB0 65, BP(BoIX-x)[XoP](dx) - P(x (A 0 )

Then Y induces a new probability on B: Y o P(*IX)

From the knowledge of X o P and of P(.IX) one can define a "natural"

probability on the product A x B by:

b- - - - % -- .. . - . -, . . Q - . . .. . . .. .. .- . . . . .- . . . . . . . . - - .. . . . .. . . ...

P . ..... .. .... ...... ... .-..... .•. . .- . . .----. -• .•-..

,%dT 9 IP 9 ,. * -; ov' °,o* *. * . . . . - - ,,.. -.. . . -. , - . ,.•.• •.-. . - .. . .. ", . -. . -. -. .*-. . .' -. • •."
,- ....... ...,, ... .. .. --........ '." . .".. ... "". ', " '"" .. - " .. - • . . " .- "- -. " -" " " -........................................................
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V AO e A. V Bo e , 1Y 0 P(.Ix)] Ix o P](AO x B)

X! Y. 0 X -X)(x P)(dx)
'0

Symetrically, in conditioning relative to Y, we have on B x A

the probability

V o e B, V A e A. Ix o P(.IY)] ®y o P](B0 x A0)

S x P(AoY -- y)(Y * P)(db)
B0

Nov if

1: AxB -- BxA

(.&,b) '- (b, a)

1o (fY 0 P(. IX)] 0 [X ° ) - [xo P( ))]®Y a P ,

which is easier to look at on the diLarm than to readl

PP

.4X

4O

44 -. .* . - . - - - -
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7. Application to Nsrkov wocess

If time is a discrete nuber t E A, a stochastic process

x (xt)t where Xt  is a rand variable from (2,FP) to (s,),

then (S,Xt) is said to be Darkovian if the probability induced on

(sS) by xt  depends only on %_, or,

V (xis,...,xt 1 ) e St

P(t e AtIA[Xs - x,]) - P(xt e At Ixt = -

Hence, for any measurable and bounded function jon 8, if we write

(Xs)s<t o P for the Joint distribution of the Xs, s < t, and

xt o P(.I(Xsls.) (ks)s)

for the distribution of Xt  conditional on all previous realizations of

the X., we have:

,/(xl[(x ) 0<t 0 PI(dx) - f/(X)[X t 0 PI(dxti(X,)..t)

, - i (xs), [l(x,)s o P](dxl,...,dxt_,).

So, for any At ES, j - Sl x ... XstixAt

[Xt o P](At)- f1S x...xSt_lxAt*(x*,...,xt)[(x.).<t 0 P](dxl,...,dxt)

I [x1 0 P](dx 1  xl) ...-[Xl o P](dztxt _.l_ " It_)

4.. , ... At. .. . . .. .. . ... .. . . .. . . .,. . . . . .
,. -,. 9, ,, , . . .. . . . i.. . * .- . . .. .. , . .. • - . - . .. " . . - . . .- "

i ? , _ . ,' ,, . ,. .. .. , , , ., : .' . -. .. . , ., .. " . ., ., , . ., .. , ., • . -. - . , . . .



Thus, if we call At (xt_it) f [Xt o Pl(dxt I[Xt_l xti]), . it
At

is easy to verify is a transition fram St-1 to S, and we can vrite:

[xt * P(At) a (It e [X 1 opll)(At) .

It is called the transition (or kernel) in t for the process. In

the case where for every t, It -., the process is said to be

hmogeneous and it is perfectly defined by Y 1  P and A,

xt 0 t-2 P.

.r.

,.

.

I
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Aimendix 2

Weak ToDolom' on a Set of Transition
All sets A, B, C,... are supposed metric and separable in this

appendix.

If T is the set of transitions from A to B, we need

to define a notion of convergence of a sequence which fits at the same

time the notion of convergence for the sequence T (o,l) of measurablen
function in [0,1] and the sequence Tn(a,-) of probability measures

on B. The distance on T defined by ITI - sup IT(a,-)I is a
a

candidate but does not give many properties to T. In a Bayesian

structure, where there is a probability measure u on A, the general

idea is to transform the problem in terms of transitions to problems in

terms of measure on the set A x B (Florens 11977], Raoult 119751).

For a fixed u, every transition T from A to B defines a unique

probability on A x B: T* u , whose marginals are u on A and

T • u on B. Reciprocally, every measure on A x B whose marginal

on A is u, defines u-a.e. a transition *A (r conditioned by

the projection on A) such that WA 1u - T.

If we call Tj the set of probabilities on A x B whose

marginals are u, we have defined a bijection I between T'p and

the set Tp of equivalence classes p-a.e, of transitions from A to B.

Definition: U-topology on a set of transition from (AA,u) to

(B). For every topology on T' U, we shall define on Tu the topology

which makes I an isomorphism, which is to say:

., . ,.o.';...'. ... *.. . .. *- . . *. - .. *'- - .- .- * .. '..'.'..'-.' --.-- .'. . .. '. .-. .. . ..
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T i~*T NaOT I -- NO

and call it It-topology.

* it-week topoloa on T.

S.We need a topology vhich nakes T compact. If A and B are

compact, and thus A x B is comp t too, we are using on T' the

topology of the weak convergence of measures vhich ve define by

1ff:
4. n

V 6 (B),. 6v,,, IIdw
B B

vhere 81(B) is the set of real valued functions on B bounded by 1.

For this topology if the set A x B is compact, the set of probabilities

on A x B, T.' is compact.

Proposition: The set T' of probabilities on A x B compact,

whose marginals on A are v, is compact.

Proof: The set Ttv of probabilities whose marginals are V, is

a closed set of T'. The marginals of w is projA o V and the main

theorem of weak convergence is that if wn --* w, Xz w -- ' x * w.

Here, if w --%- w, v a proJAo in - -  r o o w vhich is thus .

Note: Because all w r TV have the ssme marginal ji, it is

sufficient to assume that N is tight, and B compact for TI to

be compact.

. ...... .............'4..,.

. *, ,:," -- .~ **, . . . . . . .... I .*. . . .. .. . . . . . * . S . * ' * s . . 4

I "I - k " dmm dm
- ,

mdb 
dm,, '-,m-

mt.., .. *. m.. ..... ~~d ~ m
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Ve will need the folloving

" For every sequence of transition Tn: A B,

Tn  converges, -weakly toward T if and only if for every C and every

transition U: B --K C, U @T n converges ji-weakly to U T

12,1WV.

fp(da) f (,b,c) US T (,dbdc) converges.
A BiC

Ve can write the intqral

Iu

as

fU(b,de) g(&,bc) 1E B(A x B)
C

By definition of Tn -- > T, the integral converges toward

f'ia(da) f fU(b~dc)6(a,b,c)T(asdm)
A B C

which is

fR (da) f d(lib,c) U0 T (cab)
A BxC

Me converse Is obvious: take C a B and U i identity on B.

*r. ... ,b- • .. , -. .. ,.,, .,, . . .. . * .. -

,,5 , .' _ " .' ..' ,, ' ..' .-' .-'.~~~~~~~~. . .. . . -. . ". . . . . -. . . . . . .. . - . : -.".' --' - " -. " " . . - " -, . .
~~~~~~. . . ..... . .. , , .. ., , ,* . . . ." *- . ., -: ' .- - . . . -. ., .'. . . . . .



Proposition: For every sequence U: B - C and every

transition T: A-- B * Un Convergs (T O * )-eakly toward U,

1ff U O T converges u-weskly toward U 0 T

Proof- - 'u <-V 6 B (C), JTo p(&b) f. (c) U(bd)
-- To j-w BC

converges <=> f f T(a,db) i(da) f S(c) Un (b,de) converges. Then
B A- C

V g 6: 01(B x C), f(da) I g(b,c)U n(b,dc)T(adb)
A BxC

converges, but this is true as fg(b,c)T(a,db) 6 D(C). The converse
3

is evident as it is sufficient to take g(b,c) constant in b to have

a function of B(C).

' ,, ,," ',, ,,+++ +~~~~~~~~~~~~~~~...,, ..,+,,.., ,...,+.......,...... ................ ................... ... ....
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Av~dx ..

Forecasts

In our model we suppose that agents know that they are in a

process where the distribution on the future random events is generated

t t t t+l
J by a transition vt l: H x A ---- c 9 . Hence they take into

account their decision vhen they forecast the part of Qt+l thatt+l. t+l _tel

they could knowtbrough at  : H -- Si. This is vby ve

suppose the forecast function to be

It+l t x t t+l

i . i I Si

Now could this forecast function be obtained? Let us change this to
*t1 t t+l

: Si ---< SU to simplitfy the exposition. This anticipation

fuction finds Justification of its existence in statistical techniques

of forecasting. If we suppose that uncertainty in the model can be

described by a statistical structure (0,,w) here a I. the space

of states of nature together with a o - algbra F, 0 is the space

of parmters an the probability distributions on (D, F). (If we

suppose that e has a. a - algebra, we can consider w as a trans-

ition probability from B to S .) In the &Wesian case e, with a

O-algebra bas a probability measure IA. We represent:

at

I Vt

9S
)1w
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If at  is the signal the agent is receiving at date t, let us call

St  the probability induced by o, then wt a at e w (composition must

be understood in the transitional sense), that in:

V e 6 e, V S St. at o0 (e) = fx..i (v)w(e,dv) =

Now the agent is making a forecast:

(1) In a classical sense, so he has a classical non-random

estimator: et: St -P and Yt+1  can be defined by

Y ~~~bst E St .t1 ,Yt+ 1~st,S) = wrt(ct(st),S) •

Or, if et  is a random estimator Ct: St - 0 , then ve shall have:
t t

I t+1 " t+l • t'

whch 
is

T t+l (st') " wt+l(es)t(stde)

(2) In a Bayesian sense, where he deduced from his prior on

0, a posterior distribution St - 0, so ve can define "t+1

by:

Tt+l (st,D) =M it lst,de)wt+l(e,) =t+l e Mtlstg ) "

, -,,:.,-.-:..'.-..-.......- :. -- ' • .. ...............-...-...-......-.-......... .......

J ii'i" " " a
-

"i' 
:

.
-

.* I i . . . . . ..". . . . . . . ..iiik.
l i
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Ow.- et

Mt St

A particular case is when agents have a probabilistic un-

certainty; they know the probability space, but they just don't know

which event is going to occur. In that case a forecast function is

simply a function from S to S It is a particular case in the
St t+1*

sense that a measurable function is a particular case of transition.

If YT.l: St - St+1  is the forecast function, the agent will

maximize U( 1 (st, -)) which is

f U(s) Y t+l(st,ds)

Sttl

as

y t+l(at,'.) M t T- (.) (6 is for Dirac ateasure.)

t+lt

Example: It is not often that the forecast functions are explicitly

given in the models reviewed, although it can be done easily, in some

cases. The Cyert and DeGroot [1974] paper has a very deep statistical

foundation which is appropriate. Here the signal is price. Thus price

Pt+l in period t + 1, given price Pt in period t is supposed to be of

the following ,rm: Pt+l - aPt + Vt+l where a is fixed but unknown

and (Vt) te is a sequence of independent identically distributed

.% . . ., - ' . . , ., . . - .-. , , ,-.,. .
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random errors with mean 0 and precision r. (The precision of a normal

distribution is the reciprocal of its variance.) If the firm has a

given posterior distribution for the value of a after it has observed

the price Pt, then this distribution becomes the new prior .and

the firm can apply Bayes's theorem to determine the posterior distribution

of a after the price P has been observed. In particular, it

follows that if the posterior distribution of a at the end of a

period t is normal with mean mt and precision ht, then the

posterior distribution at the end of period t + 1 will be normal

with mean mt+1  and precision ht, 1 , vhere

h t  +rPtP t
mt+ t

h + rP t

and

Thus Pt + (P tlP t), the prior Nt N W(th) and then

,(pt+ _)- (Mt+,h t+) as definedabove.
t" tl 1

I2

..... ........

.. , ,L,. ,_ , ._.'- "". .. . . . . . . . . . . . . . ...".. . . . . . . . . . . . .." ..-." . . .. . . . . ."-.."... . . . .'...'. .".". .. '. .".". .. '. .... "..'..". .... ... .. '.".. . . . . . .-. . .',-. .,"", '.
*~ -- : .'*~~.. -.- . . . . . . . . . . . . . . . . . . . . . . . . . . .
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AVnedix'.

Stochastic Process o. Nurk-ts

Here are two szoples of stochastic processes of markets vhich

give some insight on the Notion Lay.

1. Green and NaJ~uiar [19T5 ] consider a market process in vhich

agents use their private signals s c St and given prices at tine t,
t tt t x t- Xt h au or

PtE 6 t  to decide their demad C St x A - X The authors

assume that an "equilibrationu function ht relates At x xt and

A t +l , because there is no equilibrium at date t (the total ezmess

deand C - is not null), and h expresses the tendency of

the system to get closer to equilibrium. Unhappily, no economic

Justification of this function Is given and it is not clear that

there is one.

The idea is to prove that the process of prices is )arkovian

vith kernel A and that there exists a distribution s* on A such

that this process is stationary (we - x o

Acti'ally, A is defined by A t(p,) a ht (p,.) t (p,.) o i

vhere y is the distribution on 8t , and At(p,.) is a distribution

t,1on At +' . The authors did not prove that if w is the distribution

on At," l - At ew, but, frm our work, we can see this as a

consequence of the model.

To prove stationarity, assumptions are to be made on t and

ht . The most important being that these two functions do not depend

on tine' Then A does not depend on tine either and the process is

' i "- "- .,..,i"* 6 *'",'''' * ' ". " " " ":i? '. - :] " : - ' . . . /'
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homogeneous. Stationarity means that there exists an invariant measure

w' such that A is neutral for the composition of transition (see

Appendix 1). The authors prove the existence of a set A' C A such

that X(p, A') a 1 for pE A'.

2. Grandmont and Hldenbrand [19T] (see also Grandmont [19T],

Section 5) consider a process of markets in temporary equilibria. In

this process the exorenous random variable is the endowment of agents

- at date t which is assumed to be a homogeneous 3arkov process. The

equilibrium state of the economy at date t depends on previous states

and on the random endowments. The existence of a temporary equilibrium

correspondence which relates past states and present endowment to

the present state is stated. This correspondence is the link between

two periods. Through a measurable selection of this correspondence,

the state of the economy is proved to be a Markov process as well as

the initial endowment. If the correspondence does not depend on time,

this process is homogeneous and again, an invariant measure is proved

to exist which makes the process stationary.

,,

,.~~~ :- 4- .....- , . -.. 9.,.. . -- -.. . - ..-...... ............ ..

~~~~~.. .'.. . . .. ,.... . ,. - . . .. ' o-5 - 9. '. .9 .'..',..'. ...- ' . . .' .. .
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